Exploring the Motion Manifold for an Articulated Arm UGP Presentation

Avikalp Kumar Gupta

Supervised by: Amitabha Mukerjee Department of Computer Science and Engineering IIT Kanpur

November 18, 2015

- Introduction
- Related Work
 - Motion planning of planar robots
- Oata Generation
- 4 Challenges
 - Visualizing the motion manifold
 - Ideal motion manifold
 - Manifold generated on Images
- Proposals
 - Analysis
 - Proposals

Introduction

Ultimate Aim of the Work

Plan paths of multiple robots.

Aim of this Project

Extension of motion planners to 3-D with the help of **simulations**

- This project is an extension of the M. Tech. thesis of Debojyoti Dey [Dey, 2015] from 2 dimensions to 3 dimensions
- Requires exploration of motion manifold using only visual input

- Introduction
- 2 Related Work
 - Motion planning of planar robots
- Oata Generation
- 4 Challenges
 - Visualizing the motion manifold
 - Ideal motion manifold
 - Manifold generated on Images
- Proposals
 - Analysis
 - Proposals

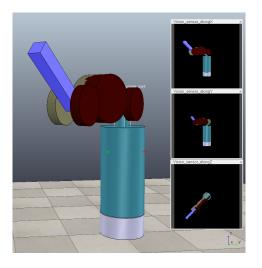
Motion planning for planar robots

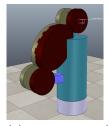
Have a look at the video demonstrations of Debojyoti's algorithm.

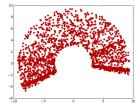
Motion planning for planar robots

- Visual Configuration Space
- Decoupled road-map composition
- Probabilistically resolution complete

3D Articulated Arm



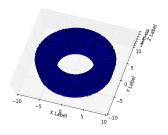

Figure: Robotic arm with 3 revolute joints - Created in v-rep. The 3 smaller windows show the image captured by the vision sensors installed in the scene (image has been generated using v-rep software)


Data Generation

Images captured during simulation.

Advantage: Avoids impossible poses

Disadvantage: Loss of uniformity in randomness



(a) An impossible (b) Plot showing pose generated by accumulation of data points assigning random on the boundaries (Details: angles to all the joints $\begin{array}{c} \text{Radial distance} = 2\pi + \theta_2, \\ \text{and angle} = \theta_0) \end{array}$

- Introduction
- Related Work
 - Motion planning of planar robots
- Oata Generation
- 4 Challenges
 - Visualizing the motion manifold
 - Ideal motion manifold
 - Manifold generated on Images
- Proposals
 - Analysis
 - Proposals

Ideal Motion Manifold

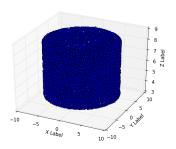
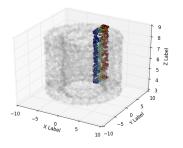
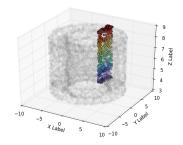




Figure: 3-D plot of θ_0, θ_1 and θ_2 is a hollow cylinder (*Details*: $2\pi + \theta_0 = distance$ from z-axis, $2\pi + \theta_1 = distance$ from x-y plane & $\theta_2 = angular$ displacement along z-axis)

Ideal Motion Manifold

(a) color changes as θ_0 increases

(b) color changes as θ_1 increases

Figure: 3-D plots explaining the structure of the hollow cylinder in figure 2 (Details: The colored points only correspond to configurations which have $0 < \theta_2 < 0.1 \text{ rad}$)

Manifold Generated on Images

We used ISOMAP (Stanford University's MATLAB code) to generate this from the image data:

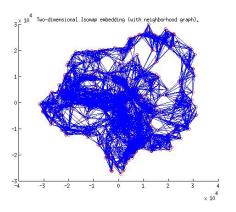


Figure: 2-D projection of the configuration-space of the robot, as deduced by dimensionality reduction using ISOMAP

- Introduction
- Related Work
 - Motion planning of planar robots
- Oata Generation
- Challenges
 - Visualizing the motion manifold
 - Ideal motion manifold
 - Manifold generated on Images
- Proposals
 - Analysis
 - Proposals

Analysis

Major reasons of these short-circuits:

- a jump when 2nd link and the base cylinder are in the same spatial region (Figure 5).
- the opposite faces of the middle link get inter-changed (θ_1 change by 180°, and θ_2 and θ_3 change signs) (6).

Short-circuits: Type 1

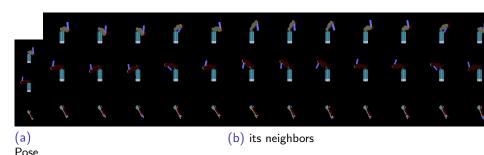
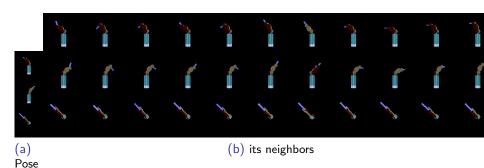
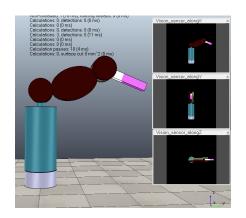


Figure: Illustration of a short-circuit: Poses in which the 3rd link is in the same spatial region, but the angles are far off, also become neighbours [$\Delta\theta_2\sim0$; $\Delta\theta_1\sim60^\circ-100^\circ$; $\Delta\theta_0\sim180^\circ$]

Short-circuits: Type 2




Figure: Illustration of a short-circuit: Poses which occupy approximately the same space, but are far off in the actual manifold become neighbours [$\Delta\theta_2=180^\circ$, $\Delta\theta_1=-2\theta_1$ & $\Delta\theta_0=-2\theta_0$]

- Introduction
- Related Work
 - Motion planning of planar robots
- Oata Generation
- 4 Challenges
 - Visualizing the motion manifold
 - Ideal motion manifold
 - Manifold generated on Images
- Proposals
 - Analysis
 - Proposals

Proposals

- Changes in input image
- Change in distance metric (use of Ideal Track Points [Ramaiah et al., 2015])

Bibliography I

Visual Motion Planning of Multiple Robots by Composing Roadmaps. Master's thesis, IIT Kanpur, India.

Ramaiah, M. S., Mukerjee, A., Chakraborty, A., and Sharma, S. (2015).

Visual generalized coordinates. *CoRR*, abs/1509.05636.

APPENDIX - A

Explanation of the key traits of Debojyoti's algorithm

Visual Configuration Space

Traditional methods used Motion configuration Space.

- Planning path on a configuration space defined in terms of motion parameters becomes intractable when the dimension of the configuration space grows up
- Dimension of visual configuration space is independent of degrees of freedom of the robots.

Multi-robot Motion Planning

- Centralized Path Planning
- Decoupled Path Planning

Multi-robot Motion Planning

- Centralized Path Planning
- Decoupled Path Planning
 - Prioritized planning
 - Fixed-path coordination
 - Semi centralized model
 - Fixed road-map coordination

Probabilistically Resolution Complete

Completeness

Probabilistically Resolution Complete

- Completeness
- Probabilistic completeness

Probabilistically Resolution Complete

- Completeness
- Probabilistic completeness
- Resolution completeness

APPENDIX - B

Another Major Challenge: Completeness

Completeness

Challenge: Correctness and Completeness

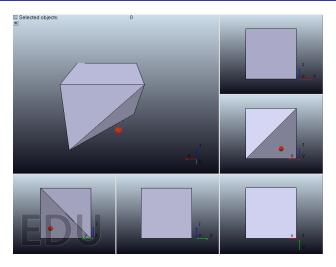


Figure: (left-top)A small sphere near a truncated cube; (others) all 5 cameras (placed at orthogonal positions) detect "false" collision (image has been generated using v-rep software)