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1 Introduction

This document is a mathematical proof of the following statement:

16 is the only number that equals nm and mn for two unique
positive integers n and m.

2 Constraints and Assumptions

Here are the constraints for this problem:

n,m ∈ N (1)

n 6= m (2)

nm = mn (3)

And based on (2), we can make this assumption:

m < n (4)

∗vksingh.iitk28@gmail.com
†avikalpgupta@gmail.com

1



3 Proof

Based on (2) and (4), we can deduce that

∃ k ∈ N | m + k = n (5)

Substituting (5) in (3):

(m + k)m = mm+k

=⇒ mm ·
(

1 +
k

m

)m

= mm ·mk

=⇒
(

1 +
k

m

)m

= mk (6)

∵ mk ∈ Z ∴
k

m
∈ Z

Thus, we know that m divides k.

∃ p ∈ Z | k = p ·m (7)

Substituting (7) in (5), we get:

n = m + p ·m
n = (1 + p) ·m (8)

Substituting (8) back into (6), we get:

(1 + p)m = mpm

∵ m ∈ N ∴ m 6= 0

=⇒ 1 + p = mp

p = mp − 1

p = (m− 1)(1 + m + m2 + · · ·+ mp−1) (9)

Refer to Appendix A for derivation of the expansion.
Now, again, because m ∈ N, thus the minimum value of m is 1. Because
there are p terms in the expansion:

1 + m + m2 + · · ·+ mp−1 ≥ p (10)
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Substituting (10) into (9), we get:

p = (m− 1)(1 + m + m2 + · · ·+ mp−1) ≥ (m− 1)p

p ≥ (m− 1)p (11)

We know that p 6= 0, because p = 0 =⇒ n = m which contradicts our
constraint (2): n 6= m. Therefore,

1 ≥ m− 1

∴ m ≤ 2

eq.(1) =⇒ m ∈ {1, 2}

If m = 1, equation (3) becomes:

n1 = 1n

n = 1 = m

∴ m = n = eq.(2)

Thus, only one value for m qualifies.

m = 2 (12)

Substituting (12) to (3):

n2 = 2n

Since 2 is a prime number, therefore the prime factorization of RHS only
contains 2. Also, given that n 6= m, we know that n 6= 2. Thus,

∃ a ∈ N | n = 2a+1 (13)

=⇒ (2a+1)2 = 22a+1

22(a+1) = 22a+1

2 · (a + 1) = 2a+1

a + 1 = 2a

a = 2a − 1

a = (2− 1)(1 + 2 + 22 + · · ·+ 2a−1)

a = 1 + 2 + 22 + · · ·+ 2a−1
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∵ a ∈ N

∴ 1 + 2 + 22 + · · ·+ 2a−1 ≥ a

=⇒ a = 2a − 1 ≥ a (14)

The only way the equality (14) holds is with the minimum value of a, which
is 1. Substituting a = 1 in equation (13), we get:

n = 21+1 = 22 =⇒ n = 4 (15)

Based on (12) and (15), we can conclude that:

m = 2;n = 4

mn = nm = 16

�
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A Expansion of mp − 1

This is the proof of the following expansion used multiple times in the doc-
ument:

mp − 1 = (m− 1)(1 + m + m2 + · · ·+ mp−1) (16)

A.1 Approach

We will start from the RHS of (16). One of its terms is a sum of an GP
(Geometric Progression). We will evaluate the value of that GP. Here is the
GP:

S = 1 + m + m2 + · · ·+ mp−1 (17)

A.2 Proof

Multiplying both sides of the above equation (17) by the common multiplier
m of the GP, we get:

m · S = m + m2 + m3 + · · ·+ mp−1 + mp (18)

Notice that the p − 1 terms, which are m, m2,. . . ,mp−1, are common in the
RHS of equations (17) and (18). So if we subtract S from m · S, we get:

S ·m− S = m + m2 + · · ·+ mp−1 + mp − 1−m−m2 − · · · −mp−1

(m− 1) · S = mp − 1 (19)

Substituting (17) back into (19), we get:

(m− 1)(1 + m + m2 + · · ·+ mp−1) = mp − 1 (20)

(20) is same as (16) �
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