Integer solutions of $n^{m}=m^{n}$

Singh, Vivek* and Gupta, Avikalp ${ }^{\dagger}$
Alokit Innovations Private Limited, India

May 2021

1 Introduction

This document is a mathematical proof of the following statement:
16 is the only number that equals n^{m} and m^{n} for two unique positive integers n and m.

2 Constraints and Assumptions

Here are the constraints for this problem:

$$
\begin{align*}
n, m & \in \mathbf{N} \tag{1}\\
n & \neq m \tag{2}\\
n^{m} & =m^{n} \tag{3}
\end{align*}
$$

And based on (2), we can make this assumption:

$$
\begin{equation*}
m<n \tag{4}
\end{equation*}
$$

[^0]
3 Proof

Based on (2) and (4), we can deduce that

$$
\begin{equation*}
\exists k \in \mathbf{N} \mid m+k=n \tag{5}
\end{equation*}
$$

Substituting (5) in (3):

$$
\begin{align*}
&(m+k)^{m}=m^{m+k} \\
& \Longrightarrow m^{m} \cdot\left(1+\frac{k}{m}\right)^{m}= m^{m} \cdot m^{k} \\
& \Longrightarrow\left(1+\frac{k}{m}\right)^{m}=m^{k} \tag{6}\\
& \because m^{k} \in \mathbb{Z} \quad \therefore \frac{k}{m} \in \mathbb{Z}
\end{align*}
$$

Thus, we know that m divides k.

$$
\begin{equation*}
\exists p \in \mathbb{Z} \mid k=p \cdot m \tag{7}
\end{equation*}
$$

Substituting (7) in (5), we get:

$$
\begin{align*}
& n=m+p \cdot m \\
& n=(1+p) \cdot m \tag{8}
\end{align*}
$$

Substituting (8) back into (6), we get:

$$
\begin{align*}
(1+p)^{m} & =m^{p m} \\
\because m \in \mathbf{N} \quad \therefore m \neq 0 & \\
\Longrightarrow 1+p & =m^{p} \\
p & =m^{p}-1 \\
p & =(m-1)\left(1+m+m^{2}+\cdots+m^{p-1}\right) \tag{9}
\end{align*}
$$

Refer to Appendix A for derivation of the expansion.
Now, again, because $m \in \mathbf{N}$, thus the minimum value of m is 1 . Because there are p terms in the expansion:

$$
\begin{equation*}
1+m+m^{2}+\cdots+m^{p-1} \geq p \tag{10}
\end{equation*}
$$

Substituting (10) into (9), we get:

$$
\begin{align*}
& p=(m-1)\left(1+m+m^{2}+\cdots+m^{p-1}\right) \geq(m-1) p \\
& p \geq(m-1) p \tag{11}
\end{align*}
$$

We know that $p \neq 0$, because $p=0 \Longrightarrow n=m$ which contradicts our constraint (2): $n \neq m$. Therefore,

$$
\begin{aligned}
1 & \geq m-1 \\
\therefore m & \leq 2 \\
e q \cdot(\mathbb{1}) \Longrightarrow m & \in\{1,2\}
\end{aligned}
$$

If $m=1$, equation (3) becomes:

$$
\begin{aligned}
n^{1} & =1^{n} \\
n & =1=m \\
\therefore m & =n \nleftarrow e q .(2)
\end{aligned}
$$

Thus, only one value for m qualifies.

$$
\begin{equation*}
m=2 \tag{12}
\end{equation*}
$$

Substituting (12) to (3):

$$
n^{2}=2^{n}
$$

Since 2 is a prime number, therefore the prime factorization of RHS only contains 2. Also, given that $n \neq m$, we know that $n \neq 2$. Thus,

$$
\begin{align*}
\exists a \in \mathbf{N} \mid n & =2^{a+1} \tag{13}\\
\Longrightarrow\left(2^{a+1}\right)^{2} & =2^{2^{a+1}} \\
2^{2(a+1)} & =2^{2^{a+1}} \\
2 \cdot(a+1) & =2^{a+1} \\
a+1 & =2^{a} \\
a & =2^{a}-1 \\
a & =(2-1)\left(1+2+2^{2}+\cdots+2^{a-1}\right) \\
a & =1+2+2^{2}+\cdots+2^{a-1}
\end{align*}
$$

$$
\begin{align*}
& \because a \in \mathbf{N} \\
& \therefore 1+2+2^{2}+\cdots+2^{a-1} \geq a \\
& \Longrightarrow a=2^{a}-1 \geq a \tag{14}
\end{align*}
$$

The only way the equality (14) holds is with the minimum value of a, which is 1 . Substituting $a=1$ in equation (13), we get:

$$
\begin{equation*}
n=2^{1+1}=2^{2} \Longrightarrow n=4 \tag{15}
\end{equation*}
$$

Based on (12) and (15), we can conclude that:

$$
\begin{array}{r}
m=2 ; n=4 \\
m^{n}=n^{m}=16
\end{array}
$$

A Expansion of $m^{p}-1$

This is the proof of the following expansion used multiple times in the document:

$$
\begin{equation*}
m^{p}-1=(m-1)\left(1+m+m^{2}+\cdots+m^{p-1}\right) \tag{16}
\end{equation*}
$$

A. 1 Approach

We will start from the RHS of (16). One of its terms is a sum of an GP (Geometric Progression). We will evaluate the value of that GP. Here is the GP:

$$
\begin{equation*}
S=1+m+m^{2}+\cdots+m^{p-1} \tag{17}
\end{equation*}
$$

A. 2 Proof

Multiplying both sides of the above equation (17) by the common multiplier m of the GP, we get:

$$
\begin{equation*}
m \cdot S=m+m^{2}+m^{3}+\cdots+m^{p-1}+m^{p} \tag{18}
\end{equation*}
$$

Notice that the $p-1$ terms, which are $m, m^{2}, \ldots, m^{p-1}$, are common in the RHS of equations (17) and (18). So if we subtract S from $m \cdot S$, we get:

$$
\begin{align*}
S \cdot m-S & =m+m^{2}+\cdots+m^{p-1}+m^{p}-1-m-m^{2}-\cdots-m^{p-1} \\
(m-1) \cdot S & =m^{p}-1 \tag{19}
\end{align*}
$$

Substituting (17) back into (19), we get:

$$
\begin{equation*}
(m-1)\left(1+m+m^{2}+\cdots+m^{p-1}\right)=m^{p}-1 \tag{20}
\end{equation*}
$$

(20) is same as (16)

[^0]: *vksingh.iitk28@gmail.com
 †avikalpgupta@gmail.com

